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ABSTRACT

This paper carries out a study of optimal branched tra-
Jectories. Branched trajectories are a class of trajectories
that includes the motion of several vehicles which travel
united for some time and then break apert in order to proceed
individually to separate end conditions. The problem is
transformed to the classical variational problem of Bolza by
several linear transformeations of time. At this point the
established necessary minimizing conditions of optimal control
theory may be applied. A number of applications are considered
and numerical solutions are obtained in two cases.
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SOME OPTIMAL BRANCHED TRAJECTORIES

By Joseph D. Mason
. TRW Systems. Group

SUMMARY

The application of modern optimization techniques to aerospace
trajectory design and guidance development has previously been limited
to two classes. First, optimal trajectories have been determined for
individual vehicles with a single mission. Second, the trajectories
for two or more vehicles engaged in a cooperative or contradictory game
have been examined. Mathematical techniques such as the calculus of
variations have been successfully applied to some problems of the first
group while the development of the theory of differential games has
provided a method of solution for some multiple vehicle problems.

A third group of aerospace trajectories which is an outgrowth of
the variational treatment of single vehicle motion may be categorized
as branched trajectories. This class includes the motion of several
vehicles which travel united for some time and then break apart in
order to proceed individually to separate end conditions.

If a single performance index can be stated for a branched tra-
Jjectory then the optimization problem can be converted to a conventional
optimal control problem of Bolza by means of several linear transform-
ations of time. Using this approach the well established necessary
minimizing conditions of optimal control theory can be applied directly
to the branched trajectory problem.

The particular applications considered include a variety of con-
ceptually different problems. First, the insertion of two payloads
into separate orbits with a single launch vehicle is examined. The
optimal staging of such a vehicle is also treated. Next, a method of
designing launch trajectories based on abort (or alternate mission)
capability is presented. This method permits fixing the primary mission
performance while improving the ability to abort in case of failure.
Branched maneuvers of lunar lander/orbiter vehicles are also examined
as are cooperative multiple aircraft maneuvers.

Numerical solutions for the two payload launch and the abort
problem are presented. These solutions demonstrate the feasibility
and wide applicability of optimal branched trajectory theory.



1.0 INTRODUCTION

Consider the trajectory design for a multistage rocket having the
capability of deploying several upper stages simultaneously and the
mission of inserting, with each upper stage, a fixed payload into orbit.
Such a trajectory is represented by Figure 1. As indicated this tra-
jectory consists of four segments called branches. The first stage
burns along branch 1 and the empty stage is discarded at point B. The
upper stages ignite at B and proceed along branches 2,3 and 4 respectively.
Three payloads are inserted into three separate orbits at points P,, P
and P,. If each of the three payloads is fixed then the trajectory design
and stage sizing might be based on minimizing initial weight (at point L).

branch 2

FIGURE 1. A Multiple Payload Trajectory

Trajectories of the type just described are typical of a much
larger class known as branched trajectories. They differ from con-
ventional trajectories in that the state and control dimensions vary
(discretely) with time. Also, in the most general case, the end points
of each of the branches are related through imposed terminal and
intermediate boundary conditions.



%n mathematlcal terms a branch is defined by a pair of paramﬁters
, with bY > aJ a continuous mn -dimensional state vsctor xV(t)
and a plechISe continuous g-dimensional control vector u’(t) with
ad s t < bJ. Each branch will be identified by the index j = 1,..., m.
On the j~th branch the state and control are constrained by differential
equations plus algebraic equations and inequalities; i.e.

33 = £I[xI ud, 1]

¢aj[xj’u'j,t] =0 a=1,.e0, I
cba‘j[xj,u'j,t] =0 a=r+,..., s.

This description will be appropriately modified in the formal treatment
of the following section.

With this concept of a branch, a branched trajectory E, may be
described as a set of m branches whose endpoints satisfy a set of
boundary conditions,

ge[xl(al), at, T h),bt, ... K@), am, ™), 00 = o.

Among those branched trajectories, E, one which minimizes a performance
function

3 =g [tah),at toh) bt @D, 8 ™) b7
m b 3
+ Z f 1‘0 [xJ,uJ,t] dt

=1 3

is called a minimal branched trajectory, Eo'

Optimal branched trajectories might best be characterized as
belonging to the larger class of discontinuous variational problems.
For this reason a brief sketch of the early history of such problems
is in order.

As early as 1906 Bliss and Mason (ref. 1) considered a Lagrange-
type problem in the calculus of variations for which the integrand
experiences a finite discontinuity on a given curve. Such a problem is
encountered in the investigation of light rays in a medium having
refracting surfaces. Generalizations of this problem were presented
by Roos (ref. 2) in 1929 and Graves (ref. 3) in 1930.



Perhaps the first solution which could properly be called an
optimal branched trajectory was given by Sinclair (ref. L4) in 1909.
She examined a soap bubble problem for which the solution is made up
of three surfaces of revolution whose generating curves are connected
at & common point. This example will be discussed in a later section.

The transformation to be used in converting the branched tra-
jectory to a conventional Bolza form was used by Denbow (ref. 5) in
1937 for a continuous Bolza problem with intermediate boundary condi-
tions. The same transformation was used in 1930 by Hestenes (ref. 6)
to convert a problem with free final value for the lndependent variable
to one of the fixed type.

The results of Denbow have recently been revised by Hunt and
Andrus (ref. 7) to account for fixed discontinuities at the inter-
mediate boundaries and by Mason, Dickerson and Smith (ref. 8) to
account for variable or functional discontinuities. Also, Boyce and
Linnstaedter (ref. 9) have revised Hunt's results for control problems
with inequality constraints. All of these works (refs. 5, 7, 8, and 9)
were summarized and reviewed by Burns (ref. 10).

The reasons for using the transformation approach both in the
past and for branched trajectories are the same. The transformation
1s conceptually simple in comparison with all the intricacies of a
complete variational treatment. Once the problem has undergone the
transformation a rather complete set of necessary conditions is readily
available. On the other hand, if a heuristic approach is desirable,
then it is advisable to attack the branched trajectory problem directly
Yith cla;sical variations; such a treatment was performed by Vincent

ref. 11).

Those aerospace trajectory problems examined in this study by no
means exhausts the utility of optimal branched trajectories. However,
they are considered to be typical of the expected future applications.
Particular acknowledgement must be given to W. D. Dickerson and D. B.
Smith of TRW Systems Group for their contributions to many aspects of
this study and for their development of the terminal aircraft traffic
control problem.



2.0 SOME NECESSARY CONDITIONS

The more conventional form of deterministic optimal control problems,
referred to as the "ordinary differential" type by Warga (ref.l12), con-
stitutes the basis for many of the recent developments in mathematical
control theory. The usual state and control variables for such problems
are defined on a closed time interval and related on that interwval by a
set of differential and algebraic equations. Unfortunately, many
applications, especially in the field of aerospace trajectory optimiza-
tion, are not easily treated as a conventional form.

For example, consider the optimal steering of a multi-stage rocket
which has the capability of separating into several self-propelled stages
each proceeding independently to accomplish its own mission. The per-
formance of each mission may depend not only on the steering program
but also on the location in state-time space of the separation point.

For the purposes of this paper the trajectory of each stage will be
referred to as a branch and the composite of all branches will be called
a branched trajectory.

This work presents a generalization of conventional results to the
case of optimal control problems made up of several branches which
themselves are unrelated except through boundary conditions and a single
performance function. The approach taken here to establish a useful
set of necessary conditions is to transform the multiple branches into
a conventional form which Hestenes (ref. 13) calls a general control
problem of Bolza. This technique is a modification of the work by
Denbow (ref. 5) and others. Since necessary conditions for the conven-
tional problem are well known, the remaining task is merely one of
inverting the transformation thereby carrying the necessary conditions
into the multiple-branch format.

PROBLEM FOEMULATION. Let aJ, bJ be a pair of parameters such that
b > ad, j =1, ..., m
Let
xI), al = ¢t s bd,
be an n-dimensional continuous state vector and
uj(t), a‘j =t = b‘j .

a g~-dimensional piecewise continuous control vector. The superscript J,
denotes the branch; e.g.



2 [2 2 2
X - xl, X2, oo 4 xn}

is the state vector on the second branch.
Let
IIxd(t), wl(t), t]

be an n-dimensional vector valued function,

$ITxI (), w(t), t]

an s-dimensional vector valued function, and
£ 0 (8), wlt), t]

a scalar function with all of these functions of class C' on a region R
of xJ-ud-t Euclidean (n+q+l) - space (see ref. 13).

J

A branch, EJ, is defined as the pair of parameters a ,bJ and func-

tions

x7(t),ul(t)
satisfying differential equations of the form
(2.1) 0 = pxd,ud ]

and relations

(2.2) ¢aJ[xj,u3,t] = 0 a=1l, ..., T
and
(2.3) ¢d3[xj,uJ,t] < 0 a = r+l, , 8

which define ROJ C RY.

The functions ¢Y[xY,u”,t] are further restricted to those functions
for which the matrices

3
d¢ Q@ =0y, +.., G
(2.4) ( aj) 1 aJ
o,




have rank d‘j at points ij,ﬁa,ﬁ in R J where Uy eeey @ 3 are the indices
on the range 1, ..., s for which 4

(2.5) 9 5,58 = o

This restriction insures that each of equations (2.5) determines one
component of the control vector.

Let x, represent the set of all xJ(a’), x, the set of all xj(bJ), a
the set of all aJ and b the set of all bj, S =1, «e., m. Also let
g0l X4 ,Xp,2,b]be a salar function and glx,,x,,2,b] be a p-dimensional
vector valued function. These functions are defined on a domain B which
is a subset of (2mn+2m)~-dimensional Euclidean space and p . (2mn + 2m).

A branched tr.jectory, E, may now be defined as a set of m branches
whose endpoints satisfy the boundary conditions

(2.6) g[xa,xb,a,b] = 0.

Among all possible branched trajectories, E, one which minimizes
m bj

(2.7) J = go[xa’xb’a’bj + Z f fo‘j[xj,uj,t] dt
J=1 a9

is called a minimal branched trajectory and denoted by Eo'

For purposes of analysis the previous definitions will be medified
to include only functions g, and g which are of class C' in a neighbor-
hood of the values xa,xb,a,b pertaining to Eo'

An optimal cortrol problem with multiple branches is that of finding
a minimal branched trajectory, E,, as defined above. Only certain
necessary conditions for E, will be established here.

THE TRANSFORMATION. In order to obtain minimizing conditions for
the above problem a transformation (ref. 5) will be applied to convert
the m~-branch problem to a conventional single-branch control problem of
Bolza (ref. 13). On the j-th branch change the independent variable
from t to T according to the relation

(2.8) t = ad+ @I -ad) T el st s b

0<sT=<1.
As shown in Figures 2 and 3 the individual branches of a typical branched
trajectory are defined over different intervals of the t-domain but they
are all defined on the interval [0,1]in the T-domain.



STATE - x°

AUGMENTED STATE - yJ, a3, bJ

Figure 2.

TIME - t

Typical 4-Branch Trajectory in State-t Space

o
E-3

Figure 3.

Typical 4-Branch Trajectory in Augmented
State-T Space




In order to maintain a one-to-one relationship between t and T it is
necessary that ad # bJ. This restriction rules out null branches as
possible components of E, and constitutes a severe limitation which
must be taken into account for most applications.

. Under the change of independent -variable the state xJ(t) and control
ul(t), defined on the range ad < t < bd, respectively become new variables
yI(T) and vJ(T) defined on the range O < T < 1., Thus, applying the
transformation successively for j =1, ..., m the range of each of the
m vectors xJ(t) and the m vectors ul(t) is mapped onto the closed
interval [0,1;. The notation y(T) will be used to indicate the set of
all vectors yJ(T), j =1, ..., m and, similarly, v(t) will be the set
vJ(T), j=1, ..., m.

The functions
£0xd,ud ]
are transformed to
hj[yj,aj,bj,vj,T]

where the aY and b‘j appear now explicitly in the form dictated by
equation (2.8). The functions ¢J are similarly transformed to y¥J so
that relations (2.1), (2.2) and (2.3) become:

J . .
(2.9) g%%- = (bj - aj) hyd,ad b, 3, 1
(2.10) ,;,aj[yj,aj,bj,vj,TJ =0 a=1, ..., r
(2.11) ¢&j[yj,aj,bj,vj,T] < 0 a=1r+l, ..., s
J

Since the parameters a ,bJ now appear in these equations they will be
treated as constant state variables, their constancy being indicated by
the additional differential equations

da _
(2.12) 3 = O
and

db _
(2.13) a7 — O-

Where the parameters a,b originally appeared in the functions g,
and g, they will now appear as a(o),b(o) in keeping with their new status.



as state variables. This convention is a matter of choice; a(l) could
be used in place of a(o), etc. Thus, the values of a and b are free
except as constrained by equations (2.1%) below.

The boundary conditions (2.6) and the performance criterion (2.7)
become, under the transformation, -

(2.14) gly(o),y(1),a(0),b(0)] = ©

and

l m
(2.15) I = gO[y(o),yu),a(o>,b<o>]+[ D o= 2 n3ydad bl v 0 an,
=1

The right sides of equations (2.9), (2.12) and (2.13), the left sides
of relations (2.10) and (2,11) and the integrand of (2.15) are all of
class C' on a domain S cf (m(n+q)+2m+1}-dimensional Euclidean space.

The relations (2.10) and (2.11) define'S,, a subset of S.

Let ¢[y,a,b,v,T] be the set of all ¥[yJ,a’,b?,v? 1], ﬂ =1, ..., m
so that from the previous assumptions concerning ¢JCXJ,uJ,t , the matrix

m
éﬂ— has rank c = dJ
v :E:

=

¢ 070,880,991 = o

for a Uy eees adj.

SOME NECESSARY CONDITIONS. A trajectory, E¥, for the transformed
problem is a (mn+2m)-dimensional continuous state vector, z(T) D y(T),
a(T), b(T), and an (mg)-dimensional piecewise continuous control vector,
v(T), which satisfy relations (2.9) through (2.13) and whose endpoints
satisfy equations (2.14). A minimal trajectory, Eq¥ (with components
zo(T),vo(T)’, for the transformed problem is one of the E¥* which
minimizes I. Necessary conditions for a minimal trajectory E_3 have
been established by Hestenes (ref. 13) and will be stated here without
proof.

Theorem 1. Let E,* be a minimal trajectory for the transformed
problem just described. There exist multipliers Ay 2 O and

10



3 b 3
PR CORRORIRCOE SO

(j=1, ..., m; i=1, ..., n3 a=1, ..., 85 e=1, ..., p)

*
not vanishing simultaneously, and functions

(2.16)  ¥9[yd,ad, 09, v, A M9, 1] = pdend - xohoj - My,
m

(2.17) K[z,v,AM,T] = Z (J - ady xJ
=1

and

(2.18) Flz(o0),z(1) )= xogo[y(o),y(l),a\ v),b(0)]+ & - gly(o),y(1),a(0),b(0)]
such that

(i) The multipliers MJ(T) are piecewise continuous on 0 s T < 1
and are continuous at each point of continuity of vbJ(T). Moreover,

MaJ(T) =2 0 (r+l <sa < s)
with MaJ(T) = 0 at each value of T at which
¥ Ly 2(1),a,7(T) b 7(D) v Y(T),T] < o,

(ii) The multipliers A(T), I'*(T) and Fb(T) are continuous and have
piecewise continuous derivatives while the functions

2, (1), (T),A(T),M(T)

satisfy the Euler-Lagrange equations

dy- _ J_ o3y wd
(2.19) T (b av) KAJ.

da _ -
(2.20) daT KI..a =0

3*
The dot separating two vectors indicates an inmer or scalar product:

n
Jupd = S A3
Mend = 37890,
i1

11



(2.21) db _x. =p

aT b
T
(2.22) ahd o5 5y
= (b a’) K ;
y
(2.23) 2
_EJ.:KJ_(bJ_aJ)KJ
b
(2.24) N
T d L d L3y wd
- = (b a’) KbJ
(2.25) kJ. =0
i
(2.26) akd _ J=1, ..., m
aT T

on each interval of continuity of VOJ(T). The functions

K0y I(1),a,2(1),b, 3 (1), 09 (T) (1), 1]

are continuous on O < T = 1 and the transversality condition

(2.27)  aF + [A3(D) « ayd(0) + T3(T) -+ aa(T) + T(T) - ab(T)]7 5 = O
holds on E_ for all dz(o) and dz(1).

(iii) The inequality
(2.28) Kz (T),v,A(T),0,T] = K[zO(T),vo(T),A(T),O,T]

holds for all (zo(T),v,T) in S_.

This Theorem in its present form could be used to investigate
solutions of branched trajectory problems directly. However, due to
the large dimensionality of the transformed problem it seems reasonable
to invert the transformation thereby obtaining a corollary of Theorem 1
given in terms of the original problem statement.

Since each function of T in Theorem 1 carries (perhaps implicitly)
an index j, it is possible to apply the inverse of (2.8) for each value
of j on the range 1, ..., M. Under this operatjon the multipliers AY(T)
become AY(t) and the multipliers MJ(T) become w9(t). Therefore, the
functions defined by (2. lég and (2.18) become '

12



(2.29) T EICORICICIRCICHRIICH RN IS TN - SE WF JC RO ¢+
and
(2.30) G[xa,xb,a bl= A g, [x 0%,8,b] * € glx ,xb,a ,bl.
A minimal trajectory, Eo*, becomes a minimal branched trajectory,
Eo’ whose branches, Eo , have component.s
a;j,boj and xbj(t),uoj(t) on ':-z.o'j st s boj.
Condition (i) of Thegrem 1 implies that the multipliers uj(t) are

piecewise contlnuous on aoJ =t = b, “ and are continuous at each point
of continuity of u, J(t). “Moreover,®

b (t) 20 (r+l S a < 5)
with
uaj(t) =
at each value of t at which
o x 3(t),u 3 (2),8] < 0.

Equations (2.19), (2.22), (2.25) and (2.26) of condition (ii) are
readily transformed to:

(2.31) i =l
39
(2.32) 9 = d
xj
(2.33) =0
i
(2.34) B =Y

Equations (2.20) and (2.21) merely express the constancy of a and
b and need not be transformed explicitly.

By making some observations equations (2.23) and (2.24

c
integrated immedla}ely. Due to the specific appearance of a.3 and T
in the functions K

13



(b9 — ad) k9, =
"

|
~
-
1
L=
~
e
<.

and

(o) - ad) K9, = . J.
%

Now, taking (2.26) into account equation (2.23) can be written as

1r . 3
I"J.a(l) = Fja(o) +fo [KJ - (@x-7) %—ITS ]dT
or
(2.35) Fja(l) - Fja(o) + K9(0).

Similarly, equation (2.24) leads to

(2.36) Fjb(l) - Fjb(o) - x(@).

The boundary values fcr r? and Fb are determined by the trans-
versality condition (2.27).

oF
(o) = da(o)
b oF
(o) = d3b(o)

r?(1) =°@1) = 0
Combining these results with equations (2.35) and (2.36) and usin-
HI(a?)
to represent

10 (ad),ul(ad),ad],
(2.37) 2 m(ad) = 0

and

14



(2.38) J-1¢ SN Hj(bj) = 0.
abd

The remaining information contained in the transversality condition
becomes

G J(ad) =
(2.39) G T AV(aY) =0
and
(2.40) -—%9—3- + (@d) = o.
axv(bY)

Finally, for condition (1i1i) inequality (2.28) must hold for all
points zO(T),v,T in S_ . Hence, it must hold for the choice

vl = v 3(1) for 3 =1, ..o, k1, k4, ..o, g
Since bd > ad, inequality (2.28) implies that
(2.20)  #x (e),ud,n9(6),0,87 = BILx () ,u d(£),2(2),0,¢]
must hold for all points
xoj(t),uj,t iR

The preceding manipulations of Theorem 1 are summarized below for
convenience.

Theorem 1-A. Let E_be a minimal branched trajectory. There
exist miltipliers A = O &nd

), w ), e

(j =1, sesy 1N i-l. sea, N a-l. see, 83 e=l, eeey p)

*
not vanishing simultanecusly . There also exist functions defined by
(2.29) and (2.30) such that

*i.e., there exists no parameter o on O S 0 s 1 such that, if o9 = aJ +
(bj-aj)J, then A_, AJ(OJ) and € are all gzero.

15



(a.) The multipliers uaj(t) are piecewise continuous on aoJ <t

< boJ and are continuous at each point of continuity of uOJ(t). Moreover,

() 2 0 (r41 s @ <) with u I(t) =0
at each value of t at which

¢ J0x I(1), u I(2),8] < o.

(b.) The multipliers AJ(t) are continuous and have piecewise

continuous derivatives. The functions
x J(t),u Y (), (t)
satisfy equations (2.31) through (2.34) on each interval of continuity

of uoj(t). The functions
HILx 9 (8),u 2(), 09 (4),09(2),¢]

are continuous on ao'j <ts boj. In addition, equations (2.37) through
(2.40) hold on E_.

(c.) 1Inequality (2.41) holds for all points xbj(t),uj,t in Roj,
J=1,e0., m.

For the problem considered above each branch possesses the same
number of state variables, an equal number of inequality constraints,
etc. However, Theorem 1 and its corollary would remain essentially
unchanged if the state vector or control vector or the ¢J vector
functions had different dimensions on each branch. This flexibility
permits an efficient model to be used for problems having branches of
varying degrees of complexity.

BOUNDED STATE. In the previous definition of branched trajectories
only those algebraic side conditions, b, which contained the control
explicitly were permitted. The case of pure state bounds is somewhat
different in character and therefore will be given special attention
here. The problem formulation and derivation of necessary conditions
is sufficiently close to that required for the bounded state case so
only the differences will be pointed out.

16



First, in the problem statement the region RY is modified to
include only the set of elements (xY,uY,t) such tRat (see Figure 4)

(2.42) ¢>cf[x3,t] <0 a=1,...,s
j.=1,...,m
ads t < b,

A state-bounded branch, Ej, is defined as the pair of parameters
aj,bj
and vector functions
x (), wd(t)

satisfying differential equations (2.1) and relations (2.42).

With this definition of EY a state-bounded branched trajectory, E,
is defined as a set of m state-bounded branches which satisfy the
boundary conditions (2.6).

Among all possible state-bounded branched trajectories, E, one
which minimizes the performance index (2.7)_is called a minimal state-
bounded branched trajectory and denoted by Eo'

Once again the linear transformation (2.8) is applied on each
branch mapping each branch on the interval o<T<l, Each part of the
problem transforms as before except that, since equations (2.2-3) have
been replaced by (2.42), the expressions (2.10-11) must be replaced by

(2.43) ¥3[y7,a9,09,1] = 0 3
a

1,...,m
l,...,s.

Won

The transformed problem is now a conventional (single-branch),
fixed interval (osT<l) optimal control problem with bounded state.
Necessary conditions for a very similar problem are given by Hestenes
(ref. 13, page 354). The following is a modification of Hestenes'
result§ (the modification merely accounts for the variable terminal
states).

To account for the effect of the state bounds on the variations

of the end points of the trajectory the following additional boundary
conditions must be introduced.

(2.44) Epr(3-1)er0 Y[77(0),a7(0) b7 (0),0] + (x2)* = 0

(2:45)  Bpmon(s-1)ssa= Vel (1,89, p0(),2] + (8))%- o

17




STATE - xJ

BOUNDARY

o FOR BRANCH 3

\k\\BRANCH 3

BRANCH 1

’,;ﬂﬁih————BOUNDARY
- FOR BRANCH 2

Note:

Branch 1 terminates on its boundary; branch 2 begins on
branch 1 boundary, passes through the branch 1 restricted
zone, intersects and leaves the branch 2 boundary; branch
3 starts on the branch 1 boundary and never encounters
the branch 3 boundary.

Figure 4. Branched Trajectory with State Bounds
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Theorem 2. Let E_~, with components 2Z_(T),U (T), be a minimal
trajectory for the transformed problem just described. There exist
multipliers XOZO and

: . :
A{ (1),0; R1),05 (1),M5(D), e,

(3=2,...,m; i=l,...,n; o=l,...,5 ; e=l,...,p+2ms)

and functions

2.6)  K[33,a0,09, a3l 1] = Adendan -l
o s

(2.47) klz,v,A,M,7] = T (9= o)) &
=

and

(2.48)  F[2(0),2(1)] = A g [(0),5(1),a(0),b(0)]
+ e » g[ye),y(1),a(0),b(o]]
such that
(i) The multipliers Mj(T) are piecewise continuous and the multi-
pliers

A(T),T 3(T), T °(T)

are continuous and have piecewise continuous derivatives on O < T < 1
and satisfy with

z,(T), v (T)

the Euler—Lagrange equations (2.19-26) on each interval of continuity
of v J(T). The functions

©3y,3(),a,3(1),5, (1) A3 (2) (1), 1)

are contlnugus on O < T <1 and the transversality condition (2.27)
holds on E_* for all dz(o),dz(1),dy and dB.

(ii) The inequality (2.49) holds for all (z (r),v,T) in S, where
S, is defined by relationms (2.43).

(2.49) kz_(1),v,A(T),M(1),T] = K[z_(T),v (T),A(T) M(T),T]
(iii) For each pair of indicies a,j the multiplier

Mg(T) 0sT=<1

is nonincreasing and is constant on every interval on which
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(2.50) (1) = Wiy, ad(m), vl(m), T < 0.

It is continuous whenever vg(T) is continuous and at every point at

which
e’ @)
a7 fo (1)
is discontinuous.
(iv) At no point Ton O < T < 1 are the multipliers
A LAT), T *(), T (1)
of the form
A =0
(o]
A(T) =C - Yy[yo!aosbosT]
a = .
1" (T) =C Ya[yoxao:bo,T]
b — ]
where C is any ms-dimensional constant vector.
The process of inverting the transformation is the same as before
and will not be repeated here. Instead only the resulting necessary

conditions will be given.

Theroem 2-A. Let E_be a minimal state-bounded branched trajectory.
There exist multipliers Ro 2 0 and

J J
Af(t), wy(t), e
(3=1,.00,m; i=1,...,n3a=1,...,8; e =1,...,p+2ms)
and functions (2.29) and (2.30) such that on ad <t <bJ for =1,...,m

. (a). The multipliers Kj(t) are continuous and satisfy with
xg(t), ug(t) the equations

(2.51) = HjJ
A
(2.52) A= - Hjj
X
(2.53) HJj =0
u
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W I
(2.54) H'=Hy

on each interval of continuity of ug(t). The functions
Blx_9(8), u U (t), Ad(t), pl(t),t]

are continuous. The equations

(2.55) %Sj + #(ad) =0
(2.56) %%j - Hj(bj) -0
(2.57) %ﬁﬁ(aj) - kj(aj) -0
(2.58) 38,5+ 4 3d) = 0
are satisfied along with

(2.59) e (3-1)sra¥ o = O
(2.60) € ems+(j-1)s+a B2 = O

(b) The inequality
B 0x 9 (6),ud , M (2),09(2),8] < BI0x 2 (2),u 9 (2),A%(0) 19 (2), 8]
holds for all ud such that (xOJ(t),uj,t) is in ROJ.

(¢) For each index a, the multiplier uaJ(t) is nonincreasing
and is constant on every interval on which

Jrye J
#a[xo (t),t] < O.
It is continuous where uOJ(t) is continuous and at every point at which
d_rJ
dt [43 cx]
is discontinuous.
(d) At no point t are the multipliers xO,AJ(t) of the form

A =0
(o}
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Mo=a b ()¢

X
where 4 is any s—dimensional constant vector.
It should be noted that the transversality equations of Theorem

2-A differ from those of Theorem l-A because of the difference in the
definitions of G. For Theorem 1-A

_ b
= xogo * e§1 8ege
but for Theorem 2-A
p¥ims
G = Abgo * e§1 Eefe

where the last (2ms) of the functionms, 8., are defined by (2.44-45).
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3.0 SOME GECMETRIC EXAMPLES

In order to become familiar with a new technique it is usually
helpful to try that technique on a simple problem which has already
been solved. Unfortunately, most aerospace applications are so complex
that they cannot be solved in closed form. For that reason two non-
aerospace problems, basically geometric in nature, have been chosen to
display the branched trajectory concept.

As mentioned earlier the first example of an optimal branched
trajectory was probably given by Mary Sinclair (ref. 4) in 1909. Rather
than developing a general format for branched trajectories, Miss Sinclair
directly examined a soap bubble problem which happens to fall under
the category of branched trajectories.

The more familiar soap bubble problem is that of finding a curve
conhecting two given points in the x-y plane and on the same side of
the y-axis such that the surface of revolution of the curve about the
y—-axis is a minimum. The resulting solution shown in Figure 5 is a
catenary connecting the given points A_,A,. It has been observed that
soap bubbles under certain circumstanceés Indeed do assume the shape of
a catenary of revolution. The solution to this problem may be obtained
with conventional optimal control techniques.

Miss Sinclair's soap bubble differs slightly from the form just
described. It may be described as a surface of revolution generated by
rotating three curves (labeled branches 1, 2 and 3 in Figure 6) about a
given axis. These three curves as shown in Figure 6 are joined at
point A,. One curve terminates at the y-axis and one each at the given
points i » Ay« The points A and the coordinate Y are free. The
optimiza%ion problem is that of determining the three curves described
above such that the surface of revolution generated by rotating these
curves about the y-axis is a minimum.

In control (and branch) notation the problem can be stated as
follows: .

3 b
(3.1) Minimize J = Z f x sec w’ dx
=1 aY
(where J is the area of the surface of revolution divided by 2rm)
subject to the differential equation
.2 dy? ‘ :
(3-2) G- = tan j=1,2,3

and the boundary conditions
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Figure 6. Branched Soap Bubble Problem
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(3.3) g =a = 0

(3.4) g, = a~b'= 0

(3.5) g = 7(a%) - yr) =0
(3.6) g, = ad-b= 0

3.7 | g5 = ¥( 3) @) =0
(3.8) g = b? .—R.l =0

(3.9) gy = y(%) =h =0
(3.10) gg = 3'R2=°
(3.11) gg = y(b3) = 0.

On the j-th branch the variational Hamiltonian as defined by (2.29)
is

(3.12) HY = Ad tan w! - x sec u’

so the Euler-Lagrange equations (eqn. 2.32-33) are

and
(3.14) AJ sec2 w - x sec u? tan w = o.

The first of these equations implies that Aj = constant for j =1,
2,3. Since the secant function is never zero the control equation
implies
(3.15) A = x sin u! j=1,2,3.
Making this substitution in (3.12) yields

(3.16) H) = - x cos uY j=1,2,3.

Because g = O for this problem the function G as defined by
equation (2.303 is 9

(3.17) G = e; e_ &,
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and transversality conditions (2.37-40) are for j=1 :

g+ Hl(al) =0
=~y = &) = Hl(bl) =0
- At =o

—ey - &g * Aoty = o
for j=2 :

ey + Hz(az) =0

ey - H(b%) =0

ey = A(b%) = 0

ey * kz(bz) =0
for j =3 : _

g, * HB(aB) =0

€y - H3(b3) =0

65 - M(a7) = 0

e + A (°) =0

Since there are 12 of these equations and only 9 of the multipliers,
€, that leaves 3 independent conditions. These may be obtained by elimi-
nating all of the e's.

(3.18) A(al) = 0
(3.19) ALty = a2(&R) + A3 ()
(3.20) HE(bh) = KR (®) + (&)

Equations (3.13) and (3.14), for j = 1, together with (3.18) imply
that

(3.21) AL(t) = 0

(3.22) al(t) =0
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So branch 1 is a line segment parallel to the x axis and

(3.23) ) = 7 6h = 1.

Now, equation (3.19) indicates that
(.24) =A2(t) B AR(t)

and

(3.25) D) = - w3,

Equation (3.20) may be written as
(3.26) b1 cos ul(bl) = —a2 cos u2(a2) e cos u3(a3)

Combining (3.22), (3.25) and (3.26) and using the boundary conditions
(3.4) and (3.6)

1 =2 cos u2(a2)

or

(3.27) u?(a?) = 60°
and
(3.28) w(ad) = -60°.
From (3.15)
(3.29) A2 (t) s@- bt
and
(3.30) AM(t) = -122 bt.
Let ¢ =L b! 5o that
(3.31) tan u*(t) = FS'T
x -C

and

(3-32) tan w(t) = \E%?-

Integrating (3.2), for j = 2,3, and using the appropriate boundary
values leads to the final solution which has been simplified for the

case Rl = R2 = R,
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(3.33) yl(x) = g— 0<x s‘é-.c

(3.34) y2(x) = &= - C log (43) + C / cosh L (Z)/
#%‘C SxsR

(3.35) Y () =5+ ¢ log () - ¢/ cosn )/
\/% C<xsR

where C satisfies

(3.36) %— = cosh[%a + log Q[B)].

The solution of the branched soap bubble problem consists of a
line segment for branch 1 and a catenary for each of branches 2 and 3.
Apparently, none of the branches degenerate to zerc length as the
parameters h and R take on increasing positive values. However, Sinclair
(ref.4t) shows that the three branch solution is not stable if any branch
contains a conjugate point (i.e., fails to satisfy Jacobi's necessary
condition).

A MINIMUM DISTANCE PROBLEM., A very simple example which demon-
strates some of the short comings of the theory is that of finding
the shortest path consisting of three branches and connecting three
points as shown in Figure 7. Without loss of generality one point
may be placed at the origin, one on the positive x -axis a unit distance
from the origin and a third at a general point (h,k) in the first
quadrant.

The state J, x% on the j-th branch evolves according to the
differential equations
J
(3.37) 9 ;

—= = cos u
ds

(3.38) J

= sin u

N
[0)]
<

J=1,2,3

where the control u’ is the slope of the path in X, = X, space.

The performance criterion is Jjust the sum of the lengths of the
three branches. 3 o)

(3.39) J s;‘i fj ds

= a
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Figure 7. Three Point Minimum Distance Problem
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Using the branch numbering from figure 7, the boundary conditions are:

gl=al=0
8, = a2 =0
g3 = a3 =0
1
g, = xl(a )=0
g5=x2(a )=0
g, =x (b°) -1 =0
g7=x2(b2)=0

This completes the problem statement.

(3.40)

J _ad J J oaain nd
HY = Al cos uvY + kz sin u 1

=% (%) -
- 2(b3) -

(1]
i
(@)
dﬁ
~
[
N
S
|

0q
()
=
]
s
[}
N
~
|

0a
'._J
o
i
~~
[
p
\

The H function

j:

Applying the Euler-Lagrange equatiohs determines that

constant, j = 1,2,3, and that
: J
(3.41) tan ul =2
J
M

Applying equations (2.38) shows that

wpd) = o

1,2,3.

J=1,2,3.

h=0
k=0
xl(bl) =0
xz(bl) =0
xl(bl) =0
x2(b1) =0

on each subarc is
1,2,3

Ki and A% are

The remaining transversality conditions eventually lead to the

(3.42)
result

1
(3.13) A -
and
(3.44) Ap =

2,3

M

Az + A}

2 2°

Equation (3.42) along with (2.34) imply that

(3.45)

ki cos w + Ag sin uj =],

This together with equation (3.41) permit the following result.
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cos u

(3.46) Ad

(3.47) Kg sin ud .

Since ki and KJ are constant the slope uJ is constant and each
branch is a Iine segment. It only remains to discover at what angles
these lines intersect. ZEquations (3.43-47) indicate that

1 2 3

cos u =cos u + Ccos U

sin ul = sin u2 + sin u?.
These equations are satisfied by

2 ul - 60°

u

v = ul + 60°.

That means that the three branches must intersect at 120° with respect
to each other. Point B, the branch point must be located such that
line segments connectlng point B with each of the points P , P, and

P, intersect at 120° Obviously, there exist some locatlons o% point

P3 such that no proper branch point may be chosen (for example, take
k3— 1 and h = 100). 1In these instances, there are no solutions

having three branches. Instead a two branch solution must be used.

This type of degeneracy, represents a real obstacle to the mumerical
solution of complex branched trajectory problems. If "physical insight"
does not dictate the correct number of branches, considerable time

could be wasted in attempting to obtain a solution which does not exist.

Figure 8 shows the locus of branch points for k = 1 and h increas-
ing from 1/2 to (1 +/3/ 3). As h approaches the value (1 +/3/ 3)
the branch point approaches P, and the second branch degenerates to
zero length. At this point tﬁe analysis falls apart and for greater
value of h a three branch solution does not exist. Of course one may
still look for two branch solutions.

The procedure used above was to apply Theorem l-.A directly to the
original problem formulation. It was not necessary to transform the
original problem because Theorem 1l-A is stated in terms of branched
trajectories. However, the alternate procedure of transforming the
original problem to the format of conventional optimal control and
solving that problem by applying Theorem 1 may be both instructional and
practical for some numerical schemes. This latter approach is briefly
sketched below for the previous minimum distance example.
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On each of the three branches replace S as the independent variable
by T according to the relation

(3.48) S =ad+ (b - ad)T 0<T gl
J=1, ,3
Now, following the same notation used in section 2, equations (3.37-
3.38) become
J

dy
(3.49) Eﬂfk' = (b9 - &J) cos v
dy,j .
(3.50) HTE— = (oY - aJ) sin v J=1,2,3
O<Tsgl

The performance criterion (3.39) transforms into
1
(3.51) I= s f (09 - ad)ar

J'=l 0

Since the aY's and bY's will be treated as state variables, six
additional difrferential equations mist be included.

J
(3.52) §-=0
dp
(3.53) o =0 J =1,2,3

The boundary conditions 8y through g remein unchanged except for
replacing &’ by a’(0) in 81» g , and g l%ne variational Hamiltonian
for the transformed problem 1s° glven b§ (2.17).

(3.54) K= ¢ (0 - ad)x
J=1

o9

J J J
where = Al cos vY + A2 sin v¥ - Ao
Application of the necessary conditions of Theorem 1 to this
formulation results in the same solution as that obtained by using
Theorem 1l-A directly. This example was also discussed by Mason

(ref. 14).
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4.0 - AEROSPACE APPLICATIONS

In order to evaluate the utility of optimal branched trajectories
with respect to trajectory design and guidance development, five areas
were examined. These are: (1) the trajectory design for multiple pay-
load launch vehicles; (2) the inclusion of optimal staging techniques
in the foregoing example; (3) the trajectory design for secondary or
abort, mission optimization; (4) branching lander/orbiter type space
maneuvers such as those available té the lunar module (IM) and control-
service module (CSM) of the Apcllo project; and (5) air traffic terminal
control. Some numerical results were obtained for problems (1), (3)
and (4); this data is presented in section 5.0.

MULTIPLE PAYLOAD LAUNCHES. The mission profiles for this example
are sketched in Figure 9. TIwo payloads are to be inserted into two
separate orbits. In the conventional approach (represented by the
dashed line in Figure 9) two optimal trajectories are computed separately,
the first starting at the initial point and ending at the required
orbit for payload number 1 and the second starting in that orbit and
proceeding to payload number 2's orbit. In the branched case the
vehicle separates into two parts prior to reaching the first orbit.

The equations of motion to be used for this example include only
the effects of inverse square gravity in two dimensions.

(4.1) T = %'cos 8 - iz sin ¥y

(4.2) v = %; sin 6 - (—%- - %) cos Y
rv

(4.3) r=vsiny

(4.4) & =T cos v

(4.5) m=-8

The state variables v, v, r, $ and m are defined as the modulus of
velocity, the flight path angle referenced to the local horizontal,
the radial distance from the central body, the range angle and the
mass respectively. The control variable 8 is the angle of attack

(or the angle between the velocity and thrust vectors). The remaining
parameters, T, B and K, are the thrust magnitude, mass flow rate and
the gravitational parameter. Superscripts indicating branch number
will not be used since the same equations, except for parametric
changes, apply to each branch and little possibility for confusion
will arise.
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Although some of the problem boundary conditions are quite obvious
and can be applied trivially, the complete set will be stated. The
boundary conditions defining the fixed initial state and time of

branch 1 are

8 = al =0

g, = v(al) -v =0
&3 = v(a¥) =Yy =0
g, = r(al) -r =0

g = m(al) -m o= 0.

Branch 2 is "attached" to the end of branch 1 by equating appropriate
variables.

g, = a® b =0

gg = v(a®) - v(bl) =0
gy = ¥(a”) - v(&) = 0
g 5= r(a°) = r(v) =0
g1~ $(a°) - $1) = 0

m(bl) + Am1 =0

= m( a3 2

512— m(a ) + m(a- )

where Amy is the specified structural mass of the first stage.
Similarly, branch 3 is attached to branch 1
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gy~ V(&) - v(') = 0
g15; v(@) - v@h) =0
g= r(@) - r(T) =0
gy~ 6(s7) - p(v1) =0

Also, the burn time for branch 1 is fixed,

—pl -t =0

€18 1

and the initial mass for branch 2 is specified

819~ m(az) - m =0,

The orbit for payload number 1 must be defined by boundary

conditions.

2

Bpo= V(b7) - v, =0
2

g21= Y(b ) =0

8,0~ r(b2) -r,=0
2 -

8p3=m(b") - m, =0

This last condition specifies the magnitude of payload number 1.

The remaining boundary conditions establish a circular orbit for
payload number 2.

8oy~ v(b3) -vy3=0
85= v(»’) = 0

=r(®) -1, =0
g 6 r r3
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With the first payload fixed the optimization is based on maxi-
mizing the second payload or for a minimization problem

J=g =-u).
0
Other formulations such as fixing both payloads and minimizing
the 1lift off mass would be handled in a similar fashion.

Applying Theorem 1-A of section 2.0, the Euler-Lagrange equations
for this problem are _

2 [ a4 T i
(4.6) XV—KY[ 2sn_ne-(22 + r)cosv]
mv rv
- A_sin v=- A l'-cos\(
r 4) r
- [
(4.7) XY = A, r2 cos Y
Yy _ B} -
+A¥[r z:lszl.nY krvcosY
rv
+ K4> <¥" sin 'Y)
(4.8) Xr = —Av<gE)sin Y + AY v_2 - &L—] cos Y
13 r* v
+ )»4)(% cos Y
r
(4.9) 5»¢ =0
y - ) T\ s
(4.10) km = )\v(mz) cos 6§ + hY(m2v> sin 8
The control equation with the ald of the Weierstrass E test indicates
that /
AJv A
(4.11) sin 6 = _AL_ cos § = }\_v_

where :
W
K - v + )\.v .
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Applying the transversality conditions as in the previous examples
leads to several equations linear in the constant multipliers Ee.
Elimination of these multipliers yields the following results.

(4.12) A (a%) + A (@) = A, 00)
(4.13) a(a?) + A (a?) = A (5h)
(4-14) ENCORFWEI RSN
(4.15) Ap(a%) + Ay(e®) = g (67)
(4.16) Am(aB) = Am(bl)

(4.17) Ap(57) = 0

(4.18) H(b?) = 0

(4.19) h$(b3) =0

(4.20) H(b®) = 0

(4.21) A (B0) =1

Since equation (4.9) applies on all three branches then equations
(4.17), (4.19) and (4.15) imply that

h¢(t) =0

on all three branches. Also since H is constant on all branches
equations (4.18) and (4.20) indicate that H(t) = O on branches 2
and 3.

Stationary solutions are obtained by satisfying the Euler-Lagrange
equations (4.6-8, 4.10) with the control given by (4.11) and meeting
the terminal/corner conditions (4.12-14, 4.16, 4.21). Since (4.21) is
the only equation which is not homogeneous with respect to the A-multi-
pliers it may be ignored allowing the remaining equations to be scaled
by some constant. In other words the initial value of one of the
miltipliers may be set equal to unity.

If a Newton-Raphson iteration of unknown initial and branch point
values (to satisfy terminal conditions) were used, then the order of
the iteration would be five. The guesses might include, for example,

N COR M CO RN CO RN ES RN
with 1
Av(a ) =1.
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The first two guesses establiéh the control for the first branch and
the second three the control for the third branch. Equations (4.12 ~14)
then yield the values of

2 2 2
MCORNCO RN
so the control for the second branch is also established.

For this two dimensional example there are five guesses. If the
number of payloads (and therefore the number of branches) were increased
to a total of P, then the number of guesses would be 2 + 3(P-1). So
three new guesses are required for each additional payload.

OPTIMAL STAGING. The formulation of optimal branched trajectories
may also be used to determine the optimal staging for the multiple
payload. As in reference 8 let the structural mass for each stage be
proportional to the burn time of that stage. Therefore, the structural
mass to be discarded at the end of the j-th branch is

Kj(bJ—aJ) = structural mass

The formulation of the previous problem is unaltered except for boundary
conditions 12,18,19,23 and the performance function. These become

g1, = m(a®) + m(a®) - m(vh) + K (bT=at) = 0

_ 2 2 2 _
—m(b)-Kz(b —a)—mz—O

823
P N R
J =g, = m(b”) KS(b - a’).
The resulting transversality conditions are also the same as those of

the previous example except that (4.18) and (4.20) are no longer valid
and some additional conditions arise. These are

(4.22) Aa(a®) = & (o)
(4.23) Kjxm(bj) -w@d) =0  3=1,2,3

Equations (4.23) are the switching functions which may be used to
terminate the burning of each stage.

A Newton-Raphson iteration for this staging problem would involve
seven guesses. In addition to those of the previous example it would
be necessary to guess two additional values such as

A (a) and m(a’).

Also for a P payload problem the number of guesses would be 3 + 4(P-1).
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SECONDARY MISSION OPTIMIZATION. Complete mission planning must
include a secondary or abort mission to be performed in the event the
primary mission cannot be completed. When the launch vehicle capability
exceeds that required for the primary mission, the excess propellant
may be used to shape the primary mission trajectory so that the per-
formance of a secondary mission is improved.

The secondary mission optimization problem can be stated most
precisely with the aid of Figure 10. .The trajectory is divided into
three parts called branches. The first branch (arc OB) represents the
path of the first stage of the vehicle. The arc BP represents the path
of the last stage and point P is the orbit for the primary mission. If
no fajilure occurs, the vehicle will travel along the path OBP. If the
last stage has some malfunction at ignition or if, for scme other
reason, the primary mission is unobtainable at point B, the vehicle
travels along arc BS with less than nominal thrust to achieve a
secondary mission at S. As an example, in the Apollo mission if the
S-IVB failed to ignite, service module propulsion could be used on
arc BS. The particular point B is chosen as the most critical point
of the trajectory (due to separation, ignition, etc.). Other critical
points and their associated branches could be included as long as the
number of branches is kept reasonably small. The arc OCP represents
the usual optimal trajectory for the primary mission with no secondary
considerations.

The trajectory optimization consists of jointly shaping the three
branches such that the primary mission constraints at point P are
satisfied and some performance criterion is extremized at point S.

A specific orbit is chosen for the secondary mission and the final
mass in this orbit is maximized. This procedure effectively maximizes
the propellant remaining when the vehicle achieves the orbit. This
propellant could then be used for further maneuvering.

Using Figure 10 as the basis for symbology, branch numbers 1 (OB),
2(BP) and 3(BS) are assigned to the vehicle configuration as follows:

Branch Description
1 trajectory of the Saturn S-II1 class wvehicle carrying
the Saturn S-IVB, Lunar Excursion Module (LEM) and
Command and Service Modules (CSM).
2 trajectory of the 5-IVB carrying LEM and CSM

3 abort trajectory (from S-II burnout conditions) of the
CSM (the loaded S-IVB and LEM are dropped for abort)

- The equations of motion governing flight on each of the branches
are identical to those of the previous examples (equations 4.1-5).
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The boundary conditions are also the same as those for the multi-
ple payload case except for 19. '

2 1
€19 = m(a®) - m(b™) + Am, = O
The resulting transversality conditions are given by equations (4.12-
21) except that (4.16) becomes
3 2y _ 1

(4.24) A (@) + A (%) = (b7). |

Once again, five guesses are required in the numerical iteration
procedure.

Some ground rules for choosing m,, the primary payload, should be
observed. First, it was assumed that there exists some required
payload which includes all necessary propellant reserves. With no
branching (i.e. no secondary mission consideration) the vehicle can
produce a maximum payload > . This establishes an upper bound
for m,. It is alsoc possiblé to establish a lower bound by computing
an opfimal (maximum payload) trajectory for the secondary mission with
no consideration of the primary mission. That is, assume that failure
will take place at the prescribed point and compute an optimal two-
branch trajectory using branches 1 and 3 only. (Figure 10). Now with
the branch point fixed compute an optimal branch 2 achieving a primary
payload . This procedure establishes a maximum secondary payload
independelit of m, and, therefore, a minimum practical value for m,.

Thus, in choosing m,, impose the following bounds: 2

m < m, < mye
if

my < Mp < My
then let m, = mp and if me < mp let m, = m;. Of course, if my > my
then the vehicle is incapable of accomplishing its primary mission.

LANDER/ORBITER MANEUVER. This application is similar mathematically
to the miltiple payload launch discussed earlier. In both cases the
vehicle physically separates into two parts. The only real difference
is in the set of terminal conditions.

As shown in Figure 11 the optimization problem begins at an
arbitrary point on an approach hyperbola (point 0). The spacecraft,
which consists of two stages retro-thrusts to point B where the stages
separate. After separation one stage descends to a landing configura-
tion (point P) and the other stage proceeds to a circular parking
orbit (point Q). On the descent maneuver, arc BP, a coasting arc CD
is permitted.
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Both the approach hyperbola and the parking orbit are fixed but
the points of departure and entry are free. Also the velocity vector
and altitude are specified for point P but the range is left free.
The location and time of the branch point (B) are free as are the
Jocation and duration of the ceasting arc CD.

It is desired to find a minimal branched trajectory of the type
just described such that a fixed payload is inserted into the parking
orbit and the payload placed in a landing configuration is maximized.
Although the branch point (B) is free no staging will be performed.
That is, the initial mass on the descent arc (BP) is prescribed.

Once again equations (4.1-5) will be used to represent the motion
on each branch. With the branch numbering as given in Figure 11 the
boundary conditions are as follows,

At the approach hyperbola:

g = al =0
- 1442 B -

82—1/2 [V(a )] - r(al)-E’.L—O
g; = r(a’) v(a') cos ¥(a') - by =0
g, = @) =0 |
g5 = m(al) - M.l =0
At the branch point B:

2 1

g6=a—b =0

g, = v(a®) - v(®') = 0
gg = ¥(a*) - v(1) = 0
gy = r(a) - r(v") =0
g0 = $G%) - $(&1) =0
gy = m(a") -1y =0
85 = a> - bt =0

g5 = V(&) - v(b') = 0
gy, = V(&) - Y®') =0
g5 = r(&®) - r(v") = 0
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1
16 = ¢(33) - &(b )=0
= n(s’) - m(d") + M, = 0
gl7 ma’) -m Mé
At point P:
2
81g = v(b®) - vV, =0
2
819 = y(7) =y 5 =0
80 = r(b2) - R, =0
At the parking orbit, point Q:

=v(b3)-v =0

€21 3
822 = Y(bB) =0
8oy = r(b3) - RB =0

84, =m(b3) -M3 =0
The performance index is again

2
J =g, =-m")

so that with these boundary conditions the associated transversality
conditions become:

At point O
1y _

Ho(a ) =0

where
- _ B - B _ Y :
(4.25) Ho(t) == A, r2 sin vy KY(rzv I_) cos Yy + hrv sin v
At the branch point equations (4.12-16) apply along with

(4.26) H(a%) + B(a°) = H-(ob).

The above equation may be reduced by observing that

H=L+ Ho

where J A 2
T 2
(4.27) L=>-¥Yr“+ ;% - A B.

1
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Using (4.12-14)

Ho(6%) = H,(a%) + H (a)
so (4.20) reduces to
(4.28) L) = 1(?) + L(3).

Equations (4.17-20) are also applicable to this problem implying
that

K¢(t) =0
and
H(t) = 0.

Once again Ay may be ignored and the zero H function may be used to
eliminate anéther miltiplier.

Equation (4.21) does not apply here but in its place
2y _
Km(b ) =1.

This completes the list of transversality conditions which restrict
the problem solution. Of course, equations (4.6-11) still may be used
to determine the steering for each branch.

The determination of the times, t , to begin and, t_, to end the
coast during branch 3 may be accomplisﬁed in a variety oF ways. For
example, the entire coast may be eliminated from the problem analytically
using the technique of reference l4. In any case the necessary condi-
tions to be satisfied by the minimizing branched trajectory are

L(tc) =0
and

o.

L(tr)

AIR TRAFFIC CONTROL. The class of problems being considered in this
study includes cooperative maneuvers of many aircraft. One of the
most recently publicized problems of this type is the control of air
traffic in the approach to large airports.

Although people are now working on exotic and far reaching plans
for tomorrow's transportation needs, near term solutions for air traffic
control are feasible through an optimal control approach. Whatever
the approach, the objective must be to relieve the congestion by
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landing large numbers of planes faster without a loss of efficiency or
safety.

At the present time aircraft fly holding patterns in a "stacked"
configuration represented by the cylinder in Figure 12a. Each aircraft
has an altitude separation, Ah, from the adjacent aircraft and flies
in constant altitude concentric circles. One by one each aircraft is
brought out of the holding pattern to a 'gate" from which the flight
follows a fixed glide path to the runway. This approach, while desirable
from a safety or reliability point of view because of its simplicity,
does not take full advantage of modern computer control capabilities.

If a little flexibility is allowed so that some control over the
path of each craft is available, then the problem of getting several
aircraft to the gate at a given distance apart may be stated in terms
of finding a minimal branched trajectory.

The general and realistic model for this problem would be three
dimensional and would include dynamical equations with beth pure state
and state-control inequality constraints. Solutions using such a
model would be difficult to obtain numerically and even more difficult
to obtain in closed form. For that reason a representative model in
two dimensions with kinematic constraints and no inequalities has been
chosen to demonstrate the technique.

Only two aircraft will be considered and motion will be confined
to a horizontal plane. The control region is shown in Figure 1l2b as
a circle. The path of the first aircraft is represented as branch 1
and the second as branch 2. The motion of each aircraft is described
by two differential equationms.

Branch 1: ‘Branch 2:
1 1 ) L2 2
¥ =Yy b B |
.1 1 .2 _ 2
X2 TU Xy T Uy

The superscripts indicating branch number will be dropped when possible.

The initial state of the two aircraft is specified by a set of
boundary conditions:

For the first aircraft:

& = al =0
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_ 1y _
gz —xl(a ) =0
=x2(al) -Vl + ¥ =0

&3
For the second aircraft:
_ .2 -
gh =a - TO =0

&s =x1(a.2) ~h=0
gy = x2(a2) -k =0

At the terminal point (or gate):

g, =b" - b - AT =0
gy = Xl(bl) =0
8g = x2(bl) =0
810 = x (6°) =0
g7 = x2(b2) =0

The gate in this case has been chosen as the origin, or the center
of the control region. This merely simplifies some of the later algebra.
The performance index must take into account the minimum time aspect of
landing the gircraft as well as the effects of control effort for each
aircraft. That is, the aircraft should reach the gate very guickly but
this should not cost too much in control effort. Therefore, the weighted
control effort for each aircraft is added to the time to make up the
performance function.

pt b2
J =1/2 Klf [(111)2 + (u2)2]dt +1/2 Kzf [(ul)2 + (u2)2]dt
1 2
a
+ bl

For this formulation the H-function for each branch is:
J_5J ., J J,, J Jy2 Jye

B =07 w o+ Ay 1/2Kj[(ul) +(u2)]
j=1,2

Hence, the Lagrange multipliers are constant and the controls are all
constant.
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The transversality conditions yield one piece of information,
namely
B (Y) + B2(2) = 1.
Integrating the equations of motion and substituting the boundary

values yields four algebraic equations which a}ong with the trans-
versality condition may be used to determine b~ and the four controls.

up =0 u]2'=;(\lhz+k-2 )/ot
W¥ = n/(1, - bt - AT) ug =k /(T - bt - A1)

where bl satisfies
2 2 2 2
h + k h™+ k -
1/2 % [(bISZ ] +1/2 K, [(TO- b - AT)Z] =1

This equation is quartic in bl and can be solved in closed form.
However, for the case of To= AT the equation reduces to a quadratic
having the root

o = V17208 + K )2 + k7))

Also, the control effo§§
_ 2 2 _ 2
El‘_[l [y )™+ (up)7lat = i

1l "2

a
and . b2 :
2 2 2
E, = [(u,) + (u,)%)dt = .

2]2 o 2 K+ K,

a
Figure 13 shows lines of constant » B, and b, plotted against
s%cal bo&nds for the control

the weighting factors Ki and Ké. Since
efforts establish a boulidary and an upper limit on time may be given,
the weighting factors may be chosen as a compromise somewhere between
these bounds.

This example represents only the procedure that might be used for
developing a sophisticated air terminal traffic control scheme;certainly
many other factors would have to be considered but the basic approach
would be very similar.
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5.0 NUMERICAL RESULTS

Several of the applications presented in the previous section were
examined numerically in order to assess the utility of branched tra-
jectories. Optimal branched trajectories were computed for the two-
payload launch case and the secondary mission optimization example.

The remaining numerical effort was devoted. to the lander/orbiter
maneuvers.

All numerical claculations were made with TREW System Group's
S5DS-940 time sharing system. Two separate programs were developed
to solve the branched trajectory problem. These are a numerical
integration program and an iterator program. The solution procedure
generally proceeded as follows.

(1) Guesses are made for unknown initial values on each branch.
If a particular variable, state or Lagrange multiplier, is
continuous from one branch to the next then no guess is
required. Similarly if the terminal value of a multiplier is
split between the initial values of that multiplier on two
other branches (as in egn. 4.12) then only one additional
guess 1s required.

(2) With all the initial values, guessed and given, each branch
is integrated numerically until some appropriate cutoff
value is reached. The cutoff value may be one of the terminal
conditions on the state or time or it may be a switching
function., All of the terminal values are recorded along
with the guesses.

(3) Each guess is then perturbed individually and a new trajectory
is computed by numerical integration. Again all the terminal
values are recorded along with the appropriate set of guesses.
The flexibility of the time sharing system comes into play at
this point. 3Since each perturbed trajectory is computed and
examined individually, any unsuitable trajectories may be
discarded and replaced by new trajectories obtained by changing
the particular perturbatlions. Unsuitable trajectories might
include those which fail to meet some cutorff conditions, those
whose end states vary too greatly or insignificantly from the
nominal unperturbed case and those which eppear to belong to a
different category of trajectories from the unperturbed case.

(4) The data from steps (2) and (3) is then used in the iterator
program to compute partial derivatives of the terminal values
with respect to the guesses. When the partilals are known
corrections for the guesses are computed. If the corrections
seem unreasonably large they may be reduced by a common factor.
Step (2) is then repeated with the corrected guesses. If this
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results in an improvement the corrections may be applied
again and again until no improvement is seen. At this point
the partial derivatives may be re-used to calculate new
corrections or a new set of partial derivatlves may be com-
puted by repeating step (3).

This procedure is essentially a Newton-Raphson iteration. The
degree of difficulty as well as cost increases rapidly with the number
of guesses. Fortunately, some of the pltfalls of this technique may
be avoided in this "open loop" set up. Since the operator (engineer)
may examine each trajectory prior to computing the next one, he may
adjust such important parameters as perturbation step size, nominal
guess values, etc.

Using this remote time sharing system other alternatives are also
available to the operator. In determining an initial set of guesses
for step (1) he may use a random walk procedure. That is he may
arbitrarily make changes in the guesses with the purpose of reducing
the largest errors in the terminal state. Usually in this procedure
one guess 1is perturbed in the most favorable direction until the errors
begin to grow, then that guess is held fixed while another is perturbed
and soO on.

Another technique which is sometimes helpful is to use steps (1)
through (%) above but ignore one or more of the guesses and a like
number of terminal constraeints. Then the ignored guesses may be
parameterized to satisfy the ignored constraints.

The numerical integration program used to calculate the individual
trajectories employs a fourth order Runge-Kutta (ref. 15) integration
scheme to simultaneously solve the Euler-Lagrange and state equations
(except for the mass equation which is integrated in closed form and
calculated as an explicit function of time).

Although no formal error analysls was performed on the numerical
results an estimate of the truncation error (ref. 15) was obtained by
re-running converged trajectories with the step size halved. If the
terminal states for these two computations are respectively X and Y
then the estimate of truncation error is given by:

I (x-¥)

For all of the data presented here this estimate lndicated accuracy
through eight significant decimal digits. It should be emphasized
that this represents only an estimate of truncation error and in no
way limits the size of round off error.
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Although the time sharing system as described is to be highly
recommended as a research tool it should not be used for produc?ion
computations because of the inefficiencies of "man in the loop."

TWO PAYLOAD LAUNCH. Numerical solutions were obtained for the
case of multiple payload launches discussed in section 4.0. Only two
payloads were considered with one being inserted in a 180 KM circular
orbit and the other in a 220 KM circular orbit. As indicated in
section 4.0 five guesses are required for this problem. Two are the
initial values of multipliers on branch 1 and three are the initial
values of multipliers on branch 3 (see Figure 9). Branch 1 is inte-
grated for 377.65 seconds at which time dual staging occurs. Branch 2
terminates at a given value of mass while Branch 3 stops at circular
orbit velocity for the 220 KM orbit.

The data used for the various stages is listed in table 1 and
represents a vehicle similar to the Saturn V. If that analogy were
followed the initial state for Branch 1 would correspond to burnout
conditions (exoatmospheric) for stage one of the Saturn V, Branch 1
would correspond to the trajectory of the S-II (stage two) carrying
the S-IVB (stage three) and CSM (command-service module), Branch 2
would be the path of the S-IVB alone and Branch 3 the path of the CSM.

Before attempting the branched solution several conventional opti-
mal trajectories were computed in order to gain a feeling for the
performance capabilities, multiplier sensitivities and trajectory
shape. Reference trajectory 1l consists of two separately computed
optimal paths. The first path is that of the S~II stage carrying the
S-IVB and CSM to S-II burnout after which the S-IVB carries the CSM
to a 180 KM circular orbit. From that orbit the second path is for
the CSM and terminates in a 220 KM circular orbit.

Reference trajectory 2 is also made up of two separate conven-
tional optimal trajectories. The first is that of a two stage rocket
terminating at the 180 KM circular orbit. The first stage is the S-II
carrying the S~IVB and CSM. At the staging point the loaded CSM is
discarded along with the empty S-II so that the S-IVB proceeds alone.
This trajectory gives the maximum payload attainable in the 180 KM
orbit if the branching occurs gt S~II burnout. The second part of
this reference trajectory is an optimal path for the CSM from S-II
burnout to the 220 KM orbit.

Finally, the optimal branched trajectory was computed. Because
of the results for Reference trajectory 2 the payload for the 180 KM
orbit was prescribed at 114255.7 KG which is only 28.4 KG less than
the maximum achievable. By reducing the first payload requirement
this small amount the second payload was increased 156.1 KG over
Reference trajectory 2. Table 2 compares the performances of the
optimal branched solution and Reference trajectories 1 and 2. Notice
that Reference trajectory 1 outperforms the branched solution by
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TABLE 1

DATA FOR NUMERICAL EXAMPLES

Initial State

v Y r b m
KM/Sec degrees XM degrees KG
2.8481269 14.91 6465.036 0. 611582.1
 Stage Data
Branch Thrust - T Mass Flow -~ B |Initial Mass ~-m
Number Newtons KG/Sec KG
1 L8222 1068.2 611582.1
2 889644.3 213.1 145026.5
3 85636.8 30.5 19820.0
TABLE 2
PERFORMANCE COMPARISONS FOR DUAL PAYLOADS
Payload Branched Reference Reference
Number Trajectory Trajectory 1 Trajectory 2
1 114255.7 109985.2 1142841
2 13299.7 1471545 13143.6
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1415.8 KG for the second payload but pays for this with 4270.5 KG for
the first payload. . :

An altitude-velocity plot of the branched solution is given in
Figure 14. Although Reference trajectory 2 was not plotted because
of the closeness to the branched trajectory its S-II burnout conditions
are slightly higher and faster than those shown. This slight difference
permits the branched trajectory to have better performance for the
220 KM orbit. .

The CSM portion of the trajectory is given in altitude-velocity
coordinates in Figure 15 along with the analogous part of Reference
trajectory 1. In comparing the initial states of these two branches
it is seen that for Reference trajectory 1 branch 3 starts out in a
much more favorable position for the 220 KM orbit. On the other hand
the cost, in terms of number one payload is very high in order to
attain such an initial state for branch 3.

For this solution branching was only considered at S-II burnout.
Certainly other times could have been used. In fact, it would be
possible to leave the branching time free (branching to occur any time
during S~IVB flight) and develop a switching function from the trans-
versality conditions. This would be a logical next step after several
fixed-branch~time trajectories have been computed.

SECONDARY MISSION OPTIMIZATION. Most of the results of this phase
of the study were presented separately in reference 16. A brief
summary of some of the more interesting aspects of this problem is
given below.

The secondary mission case 1s very similar to the dual payload
example except that, at the branch point, the vehicle may proceed along
either branch 2 or branch 3. If no failure occurs and branch 2 is
chosen then only the empty stage that was used for branch 1 is dropped.
The vehicle characteristics and initial state used for this problem
are the same as those given in Table 1 except that the initial mass
for branch 2 is 145026.5 + 19820 = 164846.5 KG. This corresponds to
carrying along the CSM with the S-IVB on branch 2 but only the CSM
on branch 3, The IM (lunar module) is dropped prior to Branch 3.

In order to establish some basis for comparison a conventional
optimal trajectory was computed for the primary mission only (180 KM
circular orbit). This trajectory produced 129805 KG payload for the
primary mission. From the staging point of this solution another
optimal trajectory, using the CSM only, was computed for the secondary
mission (206 KM circular orbit). The payload for this mission was
13720 KG. Altitude-velocity plots for the S-II, S-IVB and CSM portions
of these optimal trajectories are shown in Figures 16 and 17; the label
"nominal” is used to distinguish these profiles from the optimal
branched trajectories.
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For the nominal trajectory 35041.3 KG of propellant was used for
branch 2. This establishes a lower limit for branch 2 propellant; any
amount less than 35041.3 KG will result in a loss of payload for the
primary mission.

It is also possible to establish a practical upper limit for
branch 2 propellant. This was accomplished by computing a conventional
optimal trajectory consisting only of branches 1 and 3 with the terminal
point satisfying the secondary mission circular orbit conditions. Once
again, the remaining branch (2) was optimized starting at the staging
point between 1 and 3 and terminating at the primary orbit. For this
pair of optimal trajectories the secondary mission payload was 14182.3
KG and the propellant consumed on branch 2 was 38590.5 KG (corresponding
to a primary payload of 126256 KG). Since no branched trajectory will
provide more than 14182.3 KG secondary payload, it would be wasteful
to attempt to burn more than 38590.5 KG of propellant on branch 2.

After the maximum payload for the nominal case was established it
was possible to consider secondary mission optimization by specifying
some payload for the primary mission less than the maximum. The
number 129168 KG was chosen, thus allowing 637 KG more fuel to be
consumed during the S-IVB flight. Figure 16 shows that this additional
propellant permits a higher trajectory for the S-II (branch 1) which,
in turn, places the branch point in a position more favorable to the
secondary mission. As a result the branched solution provides 14000 KG
payload for the secondary mission, an increase of 280 KG over the
nominal. By expending 637 KG more propellant in branch 2 we can de-
crease the propellant in branch 3 by 280 KG which could spell the
difference between partial success and complete failure if an abort is
required at S-IVB ignition.

Figure 18 gives a comparison of control histories for the optimal
branched solution and the nominal. The marked difference in control
for branch 2 is due to the relative locations of the branch point with
respect to theprimary orbit. On the optimal branched solution this
point falls just above 180 KM while on the nominal staging takes place
at 175 KM, 5 KM below the desired orbit.

To this point only the circumstance of an abort occurring at S-IVB
ignition has been considered.. This event was chosen because of its
critical nature and the optimal branched trajectory was designed on
the assumption that failure might only occur at this point. Obviously
other branch points could be included in the analysis although numerical
difficulty increases, because of increased dimensionality, with the
addition of each branch. Also, in the case of multiple secondary
branches the performance criterion would have to include weighted
performances of each branch.
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Although the branched trajectories considered here were not
specifically designed for an abort occurring after S-IVB ignition, they
do possess some capability for that case. To investigate the per-
formance behavior resulting from such an occurrence, two optimal abort
trajectories to the secondary orbit were calculated starting 47.35
seconds after S-IVB ignition. The first case was initiated on the
nominal trajectory while the second abort departed from branch 2 of
the branched solution.

The latter provided 58 KG more payload than the former, but even
more important, it provided 615 KG more payload than the optimal
branched solution with an abort occurring at S-IVB ignition. Thus,
while later aborts from the branched trajectory may not be optimal,
they are also less likely to require optimality because of a natural
increase in payload capability.

Figure 19 is an altitude-velocity plot of the two abort trajec-
tories. The abort from the branched solution has an initial altitude
advantage, but a slight disadvantage in velocity and flight path angle.
If the abort occurs late enough these disadvantages eventually overcome
the edge in altitude as shown in Figure 20,

The secondary mission chosen here is truly Jjust that. An alter-~
nate choice could have been true abort where the second mission would
represent re-—entry conditions instead of the 220 KM circular orbit.
The abort case should yield to the same analysis and numerical tech-
niques.

BRANCHED LANDER/ORBITER MANEUVERS. The latter part of this study
was devoted to a numerical investigation of optimal branched lander/
orbiter maneuvers as shown in Figure 11. This problem proved consider-
ably more difficult than the previous two numerical examples and a
solution was not obtained. Part of the trouble with this case is the
necessity of including a coasting period in branch 2. This, combined
with the sensitivity imposed by the near zero terminal velocity for
branch 2, provided an obstacle not easily overcome especially with
the simplified iteration scheme used.
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